Mapping properties of Hardy-type operators involving general functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Properties for Convolutions Involving Hypergeometric Functions

For μ ≥ 0, we consider a linear operator Lμ : A → A defined by the convolution fμ∗f , where fμ = (1−μ)z2F1(a,b,c;z)+μz(z2F1(a,b,c;z))′. Let φ∗(A,B) denote the class of normalized functions f which are analytic in the open unit disk and satisfy the condition zf ′/f ≺ (1+Az)/1+Bz, −1 ≤ A < B ≤ 1, and let Rη(β) denote the class of normalized analytic functions f for which there exits a number η∈ (...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Bilinear Operators on Herz-type Hardy Spaces

The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on Rn are bounded from HK̇11 q1 × HK̇ α2,p2 q2 into HK̇ q if and only if they have vanishing moments up to a certain order dictated by the target space. Here HK̇ q are homogeneous Herz-type Hardy spaces with 1/p = 1/p1 +1/p2, 0 < pi ≤ ∞, 1/q = 1/q1 +1/q2, 1 < q1, q2 < ∞, 1 ≤ q < ∞, α = α1 + α2 a...

متن کامل

Mapping Properties of Generalized Robertson Functions under Certain Integral Operators

In the present article, certain classes of generalized p-valent Robertson functions are considered. Mapping properties of these classes are investigated under certain p-valent integral operators introduced by Frasin recently.

متن کامل

Some concavity properties for general integral operators

Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2017

ISSN: 1846-579X

DOI: 10.7153/jmi-11-45